
lable at ScienceDirect

Polymer 49 (2008) 2560–2567

lable at ScienceDirect
Contents lists avaiContents lists avai
Polymer

journal homepage: www.elsevier .com/locate/polymer

Polymer

journal homepage: www.elsevier .com/locate/polymer
Biaxial stress–strain behavior of chemical and physical gels
of poly(vinyl alcohol)

Bohumil Meissner*, Libor Matějka
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a b s t r a c t

In a recent paper, Urayama K, Ogasawara S, Takigawa T [Polymer 2006;47:6868–73.] found significant
differences in the pure shear behavior of the poly(vinyl alcohol) gels with similar initial modulus but
with different types of crosslinks, physical crosslinks formed by microcrystallites and chemical crosslinks
made of covalent bonds. The non-Gaussian three-chain model was found to give but a limited expla-
nation of the data. In this paper we show that the constitutive equation that we proposed and tested
previously (Polymer 2006) for filler-reinforced rubber networks gives equally good description and
reasonable interpretation of the stress–strain data on poly(vinyl alcohol) gels in different geometrical
modes. The Arruda–Boyce eight-chain model combined with the Gaylord–Douglas theory of tube-like
topological constraints describes well the stress–strain properties of chemical gels in pure shear and in
uniaxial and equibiaxial extensions. The pure shear behavior of physical gels can be reasonably explained
and described by taking into account the amplification of local strain in the presence of inextensible
particles (crystalline domains).

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

In a recent paper, Urayama et al. [1] have investigated the stress–
strain properties of physical and chemical gels of poly(vinyl alcohol)
(PVA). The physical gels were prepared by cooling PVA solutions (12
and 15 wt%) in a mixture of dimethyl sulfoxide and water (4:1) for
24 h at �20 �C. Under such conditions, crystallization takes place
and the network junctions of the resulting gels are formed by PVA
microcrystallites. The chemical gels were prepared by crosslinking
water solutions of PVA (7.5, 10, 12 wt%) with glutaraldehyde. The
stress–strain properties of the gels were measured in three differ-
ent modes of deformation: uniaxial extension (UE), equibiaxial
extension (EBE) and pure shear (PS). The authors compared the
ratio R¼ s1/s2 of the principal pure shear stresses, longitudinal s1

(sPS1) and transverse s2 (sPS2), with theoretical predictions and
found that the simple non-Gaussian elasticity theory based on the
three-chain network model of James and Guth [2,3] predicted the
stretch ratio (l1) dependence of R measured on physical gels rea-
sonably well. While in physical gels the ratio R was found to in-
crease with stretch ratio at a higher rate than predicted by the
Gaussian rubber elasticity theory, in chemical gels it was lower than
the Gaussian prediction and almost independent of stretch ratio.
x: þ420 296 809 410.
issner), matejka@imc.cas.cz
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The authors state that such effect is not predicted theoretically.
They concluded that none of the existing theories of rubber elas-
ticity theory was able to fully describe the stress–strain behavior of
PVA gels in all the four deformation modes studied.

In our opinion, the cited conclusion should possibly be
expressed in a less general way: none of the existing theories based
on models of freely penetrating volume-less chains is able to fully
describe the stress–strain data of Urayama et al. The situation looks
more hopeful if the experimental behavior is assessed in the light of
theoretical approaches modeling not only the conformational
elasticity of volume-less chains, but also other structural features
contributing to the rubbery-elastic behavior, namely the impene-
trability of real polymer chains [4–11] and the inextensibility of
hard particles (fillers, crystalline or glassy domains) if they are
present in the network [4,12].

Urayama et al. argue that in their chemical gels, even though the
polymer concentrations in water are rather low, trapped chain
entanglements are present and contribute to the network density
[1]. The presence of entanglements suggests the impenetrability
and non-zero volume of network chains; such features are modeled
by tube theories [4–11]. They were shown to result in topological
constraints on segment fluctuation and their contribution to the
free energy and to stress has been calculated.

In physical PVA gels, microcrystallites play the role of network
junctions. The crystalline domains have a much higher modulus
than the rubbery matrix itself; they are practically inextensible in
comparison with the matrix. The resulting hydrodynamic effects
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B. Meissner, L. Matějka / Polymer 49 (2008) 2560–2567 2561
associated with the amplification of the local strain have been
treated theoretically [4,12] and the relevant equations were suc-
cessfully applied to filler-reinforced networks [13].

This paper shows that, with help of the mentioned theories and
concepts, most features of the stress–strain behavior of PVA gels
observed by Urayama et al. can be fairly well described and rea-
sonably interpreted.
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2. The Arruda–Boyce equation and the concept of a strain-
dependent finite extensibility parameter

Arruda and Boyce used an eight-chain network model of vol-
ume-less chains and their result [14] for the principal (engineering)
stresses si (i¼ 1, 2) (with s3¼ 0) can be written in the form [13]:

si ¼ 2C1
1� ðlc=lcmÞ2=3

1� ðlc=lcmÞ2
�

l2
i � l2

3

�.
li (1)

X3
1

Fig. 1. Stress–strain dependence in UE determined on the NC hydrogel based on
poly(N,N-dimethylacrylamide) and nanoplatelets of Mg–Li–Na silicate Laponite XLG.
Experimental points are taken from Ref. [21, Fig. 7]. Curves a and b are drawn accor-
ding to Eq. (1), curve c according to Eq. (1) with lcm calculated according to Eq. (2);
parameters are given in Table 1.

Table 1
Parameters of Eqs. (1) and (2) for curves in Fig. 1

Parameter Curves

Gaussian a b c

2C1 (kPa) 0.85 0.85 0.85 0.85
lc,a 6.45
lcm,a 10.62
lc,b 10.215
lcm,b Na 10.62a 12.44a 12.44
a 1.40

Network NC (hydrogel PDMAA/nanoclay).
a lcm.
I1 ¼
i¼1

l2
i ; lc ¼ ðI1=3Þ1=2; lcm ¼ N1=2 (1a)

where li (i¼ 1, 2, 3) are the principal stretch ratios. The inverse
Langevin function in the original equation of Arruda and Boyce is
replaced here with the Padé approximation [15] in the same way as
used previously [13]. The symbol for the theoretical shear modulus
given in the original paper [14], Gth¼ nRT (n is the network-chain
density), is replaced here with 2C1; lc is the network-chain stretch
ratio, i.e., the ratio of the deformed and undeformed chain end-to-
end distances; I1 is the first invariant of the deformation tensor (see
Appendix A); lcm is the hypothetical highest possible network-
chain stretch ratio (or finite extensibility parameter, locking chain
stretch ratio), which is predicted by the theory to be equal to the
square root, N1/2, of the network-chain length, with N given by the
number of statistical segments in the network chain (Eq. (1a)). For
very long chains, lcm / N, Eq. (1) reduces to the result of the
Gaussian theory. The modulus 2C1 contains contributions both
from chemical crosslinks and from trapped entanglements of the
‘stable’, i.e., junction-like nature [16]. The network-chain length, N,
also seems to be determined by network junctions of both types.

Theories of the equilibrium rubber elasticity should be tested
experimentally by comparing their predictions with reproducible
and repeatable stress–strain dependences. The necessity of condi-
tioning the network by prestraining to obtain a stabilized network
structure and, as a result, reproducible biaxial data was shown, e.g.,
by James et al. [17,18]. In our previous paper we have found that
prestrained networks (e.g., that of unfilled SBR) conform to the
high-strain predictions of the Langevin-type theories very well [13]
while the behavior of virgin networks at high strains is more
complex [13,16,19,20].

It is instructive to compare the Arruda–Boyce equation (Eq. (1))
with the uniaxial stress–stretch ratio behavior of one of the
hydrogel-type materials (Ref. [21], network DMAA–NC2.5–M1;
here it is denoted by the code NC) that have been widely in-
vestigated in the last years by the Haraguchi group [21–23]. The
polymer (poly(N,N-dimethylacrylamide), PDMAA) concentration in
the hydrogel water is low (w10 wt%), the concentration of hard-
phase nanoparticles (Mg–Li–Na silicate, Laponite XLG), which play
the role of multifunctional crosslinks, is also low (w2 wt%) and the
network chains, which are anchored to clay particles through their
ends, are long, their molar mass Mc being of the order of 102 kg/mol.
The deformation properties of such diluted networks might be
expected to approach predictions of Eq. (1); however, this is not the
case. The comparison of experiment–theory is shown in Fig. 1,
where the experimental stretch ratio dependence of the stress in
uniaxial extension (points) is plotted. Curves a and b, which are
drawn using constant values of the finite extensibility parameter
(see Table 1), are not able to satisfactorily describe the experimental
data found on a virgin (previously unstrained) network, the stress
of which increases at high stretch ratios at a lower rate than
expected from the extrapolation of the curve a fitted to lower-strain
data. Such behavior was observed previously on virgin unfilled and
filler-reinforced rubber networks [13,16,19].

The reason for the more complex behavior of virgin networks
was discussed previously [13,16,19]. It was interpreted as a re-
laxation effect which may be ascribed to some kind of strain-in-
duced reorganisation of the network topology, its extent increasing
with stretch ratio. A possible mechanism was proposed: trapped
entanglements contributing to C1 – in spite of behaving as stable
network junctions at low and medium strains – may be forced by
the increasing stress to slip along the network chains, in principle
up to the nearest crosslinks. This would result in an increase in the
network mesh size and lead to an increase in the finite extensibility
parameter whose effect would partly persist on retraction and on
second and subsequent extensions. The possibility of a strain-in-
duced increase in the networks’ mesh size on first stretching was
anticipated in the literature (Wu and van der Giessen [20]) but so
far no theoretical treatment of the effect was proposed.

The dependence of the finite extensibility parameter lcm on the
chain stretch ratio lc of a given virgin network can be found by
comparison of its experimental stress–strain dependence with
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Fig. 2. Dependences of the ratio s1/s2 of principal pure shear stresses on the longi-
tudinal stretch ratio l1. Rconnect was calculated from Eq. (7) with X increasing from 1 to
2.5, Rconstr was calculated from Eq. (4) with n decreasing from þ2 to �2.
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Eq. (1) and can be described using the following empirical power
function [19]:

lc � lc;a; lcm ¼ lcm;a

lc > lc;a; lcm ¼ lcm;a þ
�
lcm;b � lcm;a

���
lc � lc;a

���
lc;b � lc;a

��a
(2)

For chain stretch ratios lower than lc,a, the finite extensibility
parameter is constant and equals to lcm,a. For chain stretch ratios
higher than lc,a, attained not far above the inflection point of the
stress–strain curve, the finite extensibility parameter begins to in-
crease with strain and at the chain stretch ratio lc,b it attains the
value lcm,b. Curve c in Fig. 1 is drawn with lcm increasing from 10.62
to 12.44 (see Table 1). The chain stretch ratio lc,b corresponds to the
highest stretch ratio used in the given experiment; sometimes the
sample is stretched up to the break. Thus, lc,b is not an adjustable
parameter and lcm,b has a very limited freedom in adjustment. Five
parameters in Eq. (2), of which only three are fully adjustable, de-
scribe the range of the increase in lcm and determine the stress–
strain behavior above the inflection point while being of much less
importance for the low-strain behavior. Tests of the fitting pro-
cedure do not reveal any signs of instability.

3. The stress–strain behavior of chemical PVA gels

As mentioned in Section 1, the presence of entanglements is
associated with tube-like constraints which hinder the fluctuation
of chain segments and create an additional term in the free energy
of deformation and in stress. The results obtained in various tube
theories [4–10] can be presented in a generalized form [11] and
the combination of the Arruda–Boyce connectivity term with the
constraint term gives – for systems with zero compressibility – the
stress in the form of an equation that we denote by the ABGI code
[19]:

si ¼ 2C1
1� ðlc=lcmÞ2=3

1� ðlc=lcmÞ2
�

l2
i � l2

3

�.
li þ 2C2

2
n

�
ln

i � ln
3
��

li (3)

The resulting stress–stretch ratio relations in uniaxial extension,
equibiaxial extension and in pure shear, together with the ex-
pressions for lc, are given in Appendix A. The ABGI equation was
shown to give a very good description of the stress–strain behavior
of prestrained networks up to high stretch ratios (up to break) [19].
In virgin networks, the strain-induced growth in the finite exten-
sibility parameter lcm is practically always operative and the ABGI
equation has to be applied in combination with Eq. (2). We denote
such combination by the ABGIL code [19].

The constraint contribution to the modulus is often denoted by
Ge in tube theories; the symbol is replaced here with 2C2. It is
proportional to do

�2, where do is the tube radius (mean fluctuation
radius of the segment) in the undeformed state [5,12]. The pa-
rameter n reflects the constraint mechanism considered in different
tube theories which predict values:�1 [4], C�1,0D [5], 0.5 [6], w0.45
[7,8], þ1 [9,10], while the phenomenological Mooney–Rivlin theory
[24,25] leads to n¼�2. In our published articles [13,16,19] and also
in studies not published so far, we find, for various systems, the n
values mostly in the range from 0 to þ1. Such result agrees best
with the prediction of Gaylord and Douglas [9,10]. Using scaling
arguments to account for the global connectivity and local entan-
glement effects, these authors developed an expression for the free
energy which also holds for chains between close parallel plates
and for chains strongly adsorbed on a surface. Thus, the expression
should also apply to networks containing filler particles and the
constraint modulus can be expected to increase with the polymer–
filler interfacial area. The expression derived by Gaylord and
Douglas contains parameter b; the use of a space-filling tube model
with a constant tube volume deformation condition gives b¼�1/2.
A comparison of the Gaylord–Douglas result with the constraint
part of Eq. (3) gives n¼�2b; for b¼�1/2, n¼þ1. If the constant
tube volume requirement is not imposed on the model, other
values of b (and n) are possible. Gaylord and Douglas admit the
possibility that n is not universal for all the network structures and
recommend that n be treated as an empirical parameter by fitting
the equation to data for a variety of network systems, each under
several constant volume deformation conditions [9]. We have fol-
lowed their recommendation.

The ratio Rconstr of principal pure shear stresses predicted by the
constraint term is given by:

Rconstrh
s1

s2
¼ ln

1 � l�n
1

l1

�
1� l�n

1

�hln�1
1 þ l�1

1 (4)

Rconstr is plotted vs the stretch ratio in longitudinal pure shear in
Fig. 2 for several values of the parameter n. For n¼ 2, the prediction
of Eq. (4) is equivalent to that of the Gaussian theory and of the
Arruda–Boyce equation (Eq. (1)), i.e., of the connectivity term
(Rconnect) of the ABGI equation (Eq. (3)):

Rconnecth
s1

s2
¼ l2

1 � l�2
1

l1

�
1� l�2

1

�hl1 þ l�1
1 (5)

According to Eq. (5), the ratio Rconnect predicted by the Arruda–
Boyce equation monotonically increases with l1 and does not de-
pend on the network-chain length. In this respect it differs from
that calculated from the Wang and Guth treatment [3] based on
a three-chain network model [2] and predicting that for shorter
network chains the stress ratio should increase more steeply.
Urayama et al. used this theoretical expectation to interpret their
experimental data on the physical PVA gels [1].

For n� 1.0, Rconstr calculated from Eq. (4) monotonically de-
creases. For the Mooney–Rivlin value n¼�2, Rconstr is predicted to
assume, in the range of l1>1.42, values smaller than unity which,
however, are physically unrealistic; such prediction disqualifies the
Mooney–Rivlin equation [24,25] from application to general de-
formation modes. For values of n increasing from �2 to zero, such
limitation is decreasingly restrictive. For networks obeying the
ABGIL equation, the stress ratio is predicted to assume values lying



Table 2
Parameters of the ABGIL and ABGILFIL equations for the chemical and physical
PVA gels

Parameter C10 P15

n 0.9 1.0
2C1 (kPa) 2.36 4.2
2C2 (kPa) 3.46 0.8
lc,a 1.0 1.0
lcm,a 1.28 1.25
lc,b 1.758 3.309

lcm,b 2.01 3.507

a 1.045 1.05
X – 1.7
s1;red;l1¼1 8.28 16.96
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in the region between Rconnect and Rconstr and to depend on C2/C1

and on the finite extensibility parameter.
The experimental stress–strain data obtained by Urayama et al.

on the chemical gel C10 (containing 10 wt% of chemically cross-
linked PVA, see Fig. 2 in Ref. [1]) are plotted in Fig. 3 in the co-
ordinates logarithm of reduced stress vs stretch ratio; definitions of
reduced stresses are given in Appendix A. In the commonly used
stress–strain plots, the absolute values of the differences between
the experimental and theoretically calculated stresses become
optically very small at low strains even though the relative de-
viations may be substantial; conversely, at high strains the absolute
values of the differences are excessively accentuated. The logarithm
of reduced stress has the advantage of showing the relative ex-
periment–theory differences in the whole range of strain with
a similar sensitivity.

The growth, with stretch ratio, of experimental reduced stresses
in UE and in PS1 (high-strain hardening) which is shown in Fig. 3
indicates a significant contribution of the finite extensibility to the
stress. The pure shear data are compared with curves 1 and 2 which
are drawn according to the ABGIL equation; their fit to PS1 and PS2
stresses is very good. The relevant parameter values obtained by
curve-fitting are given in Table 2. Using the same parameter values,
the ABGIL curves 3 and 4 calculated for UE and EBE, respectively,
are also drawn. Their fit to the experimental data is less satisfactory
and the possible reasons are discussed later on. The n parameter is
practically equivalent to the Gaylord–Douglas prediction of unity;
the ratio C2/C1¼1.47 is rather high.

In Fig. 4, the dependences of the experimental ratio R of the
principal pure shear stresses on the stretch ratio are plotted and
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Fig. 3. Stretch ratio dependences of the logarithm of reduced stresses for the PVA gels
C10 and P15. Experimental data (points) are calculated from the stress–strain data
taken from Ref. [1, Figs. 1 and 2]. Curves 1–4, are drawn according to the ABGIL and
ABGILFIL equations for parameter values given in Table 2. PS1 – full circles, curves 1;
PS2 – full squares, curves 2; UE – open circles, curves 3; EBE – open squares, curves 4.
Curves 3a and 4a, were obtained by vertical shifts of curves 3 (�0.0969) and 4
(þ0.0676), respectively.
compared with the curves drawn according to the ABGIL equation
using parameters given in Table 2. The fit to the data on the
chemical gel C10 is very good and substantiates the explanation of
the observed approximate constancy of R in chemical gels: with
increasing stretch ratio and for n� 1.0, Rconstr decreases below 2
and this effect obviously compensates the increasing trend of
Rconnect predicted for the connectivity term.

Measurements of Urayama et al. show that for the gel C7.5 with
a lower PVA concentration, the values of the experimental R (Fig. 4,
full circles) are somewhat smaller than those of the C10 gel (full
squares). In the absence of detailed data on C7.5, one can but en-
visage the theoretically possible reasons for such behavior; one of
them is a decrease in n. A curve is drawn through the C7.5 points
with n decreased from 0.9 to 0.3 and its fit to the data is good. The
remaining parameters were kept unchanged but this is a rather
crude approximation. In our previous paper [16] we found that in
a series of poly(dimethylsiloxane) networks endlinked in the
presence of an inert diluent, the parameters n, C1, C2, C2/C1 had
a tendency to decrease with increasing diluent concentration;
changes in the finite extensibility parameter can be assumed to
occur too.

Urayama et al. measured stresses in different deformation
modes at very low stretch ratios (l1<1.1) and evaluated the slopes
of the stress–strain dependences (see Table 1 in Ref. [1]). Assuming
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Fig. 4. Dependences of the ratio R¼ s1/s2 of the principal pure shear stresses on the
longitudinal stretch ratio l1 for the physical and chemical PVA gels. Experimental
points are calculated from stresses given in Figs. 1 and 2 in Ref. [1]. Curves are drawn
according to the ABGIL and ABGILFIL equations for parameter values given in Table 2;
for C7.5, n¼ 0.3; for P10, X¼ 1.5. The Gaussian curve is drawn according to Eq. (5).
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zero compressibility, one can calculate the respective G moduli for
the different deformation modes. It is found for the C10 network
that the experimental EBE modulus is somewhat higher (þ3%) and
the UE modulus somewhat lower (�3%) than the longitudinal pure
shear modulus. Urayama ascribed the effect to an experimental
error and to a non-zero compressibility.

In the semilogarithmic plot in Fig. 3, the experimental de-
pendences in all the four geometrical modes should theoretically
extrapolate to the same value at unit stretch ratio. However, this is
not the case. The extrapolated zero-strain logarithm of reduced
stress in UE is by some 0.018 (4%) lower and that in EBE by approx.
0.0365 (8.7%) higher than the respective values in pure shear. The
factors 1.04 and 1.087 are but slightly higher than those (z1.03)
found by Urayama et al. [1, Table 1]. If compressibility is zero, then
this effect should be due to some kind of experimental scatter (e.g.,
crosslinking degrees of the samples used for UE, EBE and PS mea-
surements may not be the same). The differences þ0.018 and
�0.0365 between the respective experimental UE and EBE data and
the UE and EBE curves 3 and 4 (based on fitted pure shear curves)
are almost independent of strain, the experimental-to-calculated
stress ratio being given by strain-independent multiplicative fac-
tors, respectively.

All the four curves and the experimental points given in Fig. 3
for the chemical PVA gel are replotted in Fig. 5 in linear coordinates.
The dashed lines for UE and EBE are calculated using the parameter
values based on pure shear data (Table 2). The stresses given by full
lines 3 and 4 were obtained by multiplying the corresponding
dashed line stresses using factors based on the Urayama mea-
surements of the low-strain moduli. The factor for the UE full line 3
was 1/1.03, and that for the EBE full line 4 was 1.03. The full lines so
obtained describe the data with a satisfactory accuracy, thus giving
a reasonable support to the ABGIL approach.

4. The stress–strain behavior of physical PVA gels

In the following, the physical PVA gels are looked upon as
two-phase networks with the soft rubbery phase formed by water-
diluted polymer chains and with the hard phase formed by micro-
crystallites, which play a simultaneous role of multifunctional
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Fig. 5. Comparison of the experimental stress–stretch ratio dependences of the
chemical PVA gel C10 (points) with the ABGIL equation; parameters in Table 2. Full
lines: 1 – PS1, 2 – PS2; dashed lines: 3 – UE, 4 – EBE. Full lines 3 and 4 are corrected by
factors based on low-strain moduli and on the assumption of zero compressibility.
crosslinks and of inextensible domains amplifying the local strain
in the rubbery phase. In agreement with the Urayama reasoning [1],
one can expect that in physical gels the concentration of trapped
entanglements and, consequently, the topological constraint con-
tribution to the stress will be much smaller than in chemical PVA
gels. On the other hand, one should take into account that, in the
presence of hard microcrystalline domains, the required macro-
scopic (external) strain, 3i, is achieved with the microscopic (in-
ternal) strain in the elastomer matrix, 3i,int, being higher than 3i; this
will give rise to a strain-amplification factor X [4,12]:

X ¼ 3i;int=3i; (6)

li;int ¼ 1þ 3i;int ¼ 1þ X3i (6a)
The internal (microscopic) stretch ratio is amplified to li,int¼ 1þ X3i

and this quantity should be introduced into Eqs. (3) and (1a) for li

to calculate the quantities I1,int and lc,int, which are then used to
obtain the macroscopic stress observed at a macroscopic (external)
strain 3i (at an external stretch ratio li¼ 1þ 3i). The information on
X is obtained from stress–strain measurements [4,12,13], i.e., X is
treated as an adjustable parameter. For the combination of Eqs. (2),
(3), and (6a) we use the code ABGILFIL [13].

For C2¼ 0 and constant values of X higher than unity, the de-
pendences of R on the macroscopic stretch ratio l1 predicted by the
ABGILFIL equation are obtained from Eq. (5) using the internal
stretch ratio:

Rconnect ¼ l1;int þ 1=l1;int

�1
Rconnect ¼ 1þ Xðl1 � 1Þ þ ½1þ Xðl1 � 1Þ� (7)

The curves calculated from Eq. (7) are plotted in Fig. 2. With
increasing X, the overall slope of the Rconnect vs l1 dependence in-
creases while no effect of the network-chain length is predicted.
The experimental observation of Urayama et al. that for physical
PVA gels the ratio R of principal pure shear stresses is higher than
that calculated by the Gaussian theory [1] using macroscopic
stretch ratios

s1

s2
> l1 þ l�1

1 (8)

is thus predicted by the ABGILFIL equation to be due to the am-
plification of local strain in the presence of hard-phase particles,
providing that C2/C1 is zero or small.

Using definitions of reduced stresses given in Appendix A and
a simple algebraic manipulation, Eq. (8) can be rearranged to

s1;red > s2;red (9)

which gives another relation characterizing the pure shear behav-
ior of physical PVA gels; for the gel P15 it is shown in Fig. 3. In the
same graph the inverse behavior s1,red< s2,red of the chemical gel
C10 is shown; it corresponds to that of common polymer networks
(conf. Refs. [13,16,19]).

The dependences of the logarithm of reduced principal pure
shear stresses (Fig. 3, P15, curves 1 and 2) and of the ratio R of
principal pure shear stresses (Fig. 4) on the stretch ratio are de-
scribed by the ABGILFIL equation reasonably well; the fitted pa-
rameter values are given in Table 2. The steeply increasing trend of
the reduced stress in PS1 is due both to the effect of a low finite
extensibility and to the strain-amplification factor being higher
than unity.

For the physical gel P12, the ratio R increases less steeply than
that for the P15 gel (Fig. 4). In the first approximation, this effect
was ascribed here to the lower value of the amplification factor (1.5
vs 1.7). A decrease in the strain-amplification factor with increasing
dilution is a reasonable expectation. In the absence of more detailed
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B. Meissner, L. Matějka / Polymer 49 (2008) 2560–2567 2565
experimental data, the effect of the remaining parameters cannot
be estimated and the same values are used as found for P15.

Similar to the behavior of the chemical gel C10 (Figs. 3 and 5),
the experimental stresses (Fig. 6) and the corresponding reduced
stresses (Fig. 3) in UE and EBE of the physical gel P15 differ from the
respective curves 3 and 4 calculated using the parameter values
obtained by fitting the ABGILFIL equation to pure shear data. For the
physical gel, however, the differences are significant and the shifts
of the calculated curves 3 and 4 required for a satisfactory de-
scription of the respective experimental reduced stresses (curves
3a and 4a in Fig. 3) are large: �0.0969 for UE and þ0.0675 for EBE.
The extrapolations of the experimental dependences of reduced
stresses in UE and EBE, respectively, to zero strain give significantly
lower (higher) reduced stresses at unit stretch ratio than the values
calculated on the basis of pure shear measurements. This obser-
vation leaves open questions regarding, on the one side, the ability
of the ABGILFIL equation to predict the UE and EBE behaviors from
pure shear measurements and, on the second side, the reliability of
the experimental measurements. One point is worth mentioning.
The ratio Rup¼ sUE/sPS1 of the stresses in uniaxial extension and
longitudinal pure shear calculated from data on common rubber
networks [17,18,26–29] and shown in Fig. 7 increases with stretch
ratio l1 from the initial theoretical value 0.75 [1] to w0.87 at l1 z 2;
for natural and isoprene rubber networks values of l1>3 can be
achieved with Rup tending from 0.95 to unity. The Rup points of the
chemical gel C10 lie in the group of points of common crosslinked
rubbers. On the other hand, the physical gel P15 shows a com-
pletely different behavior, its Rup being significantly lower in the
whole range of strain: at low stretch ratios it starts somewhere
below 0.75, then it increases but even at l1 z 3.5 it does not exceed
0.77. Since the ratio of the transverse-to-longitudinal stress in shear
(sPS2/sPS1) determined by Urayama for P15 is lower than that for
C10, one would rather expect its sUE to be closer to sPS1 (i.e., its Rup

to be closer to unity) than is observed for C10. Further experimental
study might help to answer these questions.

5. Deformation energy W as a function of invariants I1, I2

Urayama et al. analyzed the behavior of chemical and physical
PVA gels in terms of the deformation energy W(I1,I2) expressed as
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Fig. 6. Comparison of the experimental stress–stretch ratio dependences of the
physical PVA gel P15 (points) with curves calculated according to the ABGILFIL equa-
tion (parameters in Table 2 are based on pure shear data). PS1 – full squares, curve 1;
PS2 – full circles, curve 2; UE – open circles, curve 3; EBE – open squares, curve 4.
a function of the first and second invariants of the deformation
tensor, I1 ¼

P
i l2

i (see Eq. (1a)) and I2 ¼
P

i 1=l2
i , zero com-

pressibility was assumed [1]. The derivatives of W(I1,I2) with re-
spect to I1 and I2 are denoted by the symbols W1 and W2,
respectively. For pure shear deformation (l2¼1) the derivatives
read:

W1 ¼
1

2
�

l2
1 � 1

�
 

l3
1s1

l2
1 � l�2

1

� s2

1� l�2
1

!
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l s s
!

W2 ¼
2
�

l2
1 � 1

� 1 1

l2
1 � l�2

1

� 2

1� l�2
1

(10b)

Urayama et al. calculated the values of the derivatives from their
experimental data and showed that for chemical PVA gels both W1

and W2 are positive and little dependent on the stretch ratio. For
the physical gels, W1 is positive and increases with stretch ratio,
while W2 is negative in practically the whole range of de-
formations; as articulated by Urayama et al., this is the first ob-
servation for elastomers. For both chemical and physical gels, W1

and W2 in the small strain limit exhibit upswing and downswing,
respectively; this has often been observed for various elastomers,
as discussed by Urayama et al. [1].

Using definitions of reduced stresses, Eqs. (10a) and (10b) can
also be expressed as follows:

W1 ¼
1

2
�

l2
1 � 1

��l2
1s1;red � s2;red

�
(11a)

�1 � �

W2 ¼

2
�

l2
1 � 1

� s1;red � s2;red (11b)

If (s1,red� s2,red) is positive, as found for the physical gels, then
according to Eq. (11b) W2 must be negative, and vice versa. The
dependences of W1 and W2 on the invariant I1 (¼ I2) that we have
calculated from the Urayama stress–strain measurements (points
in Figs. 8 and 9) can be described by the ABGILFIL equation (curves)
very well using the parameter values given in Table 2.
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Table 3
Contributions to the reduced stress at zero strain s1;red;l1¼1

Contributions
to s1;red;l1¼1

NC (kPa) NC (%) C10 (kPa) C10 (%) P15 (kPa) P15 (%)

Network chains
(Gaussian)a

0.85 99.4 2.36 28.5 4.2 24.8

Finite extensibilityb 0.005 0.6 2.46 29.7 4.98 29.4
Topological constraintsc – – 3.46 41.8 0.8 4.7
Strain amplification

by crystallitesd
– – – – 6.98 41.1

s1;red;l1¼1 0.855 100 8.28 100 16.96 100

s1;red;l1¼1 ¼ ð2C1 þ FEþ 2C2ÞX:
a 2C1: stress held by network chains in the Gaussian limit.
b FE ¼ ðs1;red;l1¼1=XÞ � 2C1 � 2C2:
c 2C2.
d (2C1þ FEþ 2C2) (X� 1).
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Urayama et al. suppose that the characteristics of the physical
PVA gels originate from the structural features such as fewer
amounts of slippery-trapped entanglements along network strands
compared with the chemical PVA gels. In agreement with this ar-
gument is the low value of C2 that we found for the physical gel
P15. This factor alone, however, cannot explain the observations
R> (l1þ1/l1); s1,red> s2,red; W2< 0. Although the Wang and Guth
equation [3] predicts that R should be larger than (l1þ1/l1), it fails
in the crucial respect: it is not able to describe the behavior of PVA
gels in different deformation modes, as was already concluded by
Urayama et al. [1].

The comparison of the Urayama experimental data with the
ABGILFIL equation leads to the following conclusions:

The stress–strain behavior in pure shear of physical PVA gels is
in agreement with its two-phase structure where microcrystalline
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functions of I1. Points: calculated from the experimental stresses, Eq. (10b). Curves:
drawn according to the ABGILFIL equation using parameters given in Table 2.
inextensible domains amplify the local strain (increase the strain
amplifier X above unity) and this leads to the growth in the overall
slope of the R vs l1 dependence, to a decrease in s2,red below s1,red

and to a decrease in W2 below zero. The low degree of entangle-
ment results in a constraint modulus C2 that is low and, thus, it has
little effect on the overall slope of the R vs l1 dependence. It should
be noted that in filler-reinforced networks the presence of filler
amplifies the local strain but at the same time it enhances tube-like
constraints thereby reducing R. For instance, from the James and
Green measurements [18] on a prestrained natural rubber vulca-
nizate reinforced with carbon black, we arrived at the parameter
values X¼ 1.9, C2/C1 z 0.5, s1,red z s2,red, W2 z 0 [13].
6. Conclusions

(1) The hydrogel based on poly(N,N-dimethylacrylamide) cross-
linked with nanoplatelets of a synthetic Mg–Li–Na silicate
(Table 3, NC) behaves at low and medium elongations accord-
ing to the Arruda–Boyce equation; at high elongations it shows
deviations which can be ascribed to a strain-induced increase
in the finite extensibility parameter. Such deviations are typical
of all the virgin rubbery networks that we have studied so far
[13,16,19].

(2) The stress–strain behavior (in UE, EBE, PS) of chemical PVA gels
and the pure shear behavior of physical PVA gels can be satis-
factorily described by the constitutive ABGILFIL equation which
comprises the following contributions:
(A) Langevin-statistics-based equation derived in the Arruda

and Boyce theory [14];
(B) Strain-induced increase in the finite extensibility parameter

which takes place on the first extension of virgin networks
[13,16,19];

(C) The Gaylord–Douglas theory of topological constraints
[9,10];

(D) The amplification of local strain in the presence of inex-
tensible particles [4,12] (fillers, crystalline or glassy
domains).

The numerical values of the four contributions to the reduced
stress at zero strain are shown for the three networks in Table 3.
Low-strain contributions imparted by network chains and by finite
extensibility have similar relative values for the chemical gel C10
and the physical gel P15. The contribution of topological constraints
is large in C10 and small in P15 while that of strain amplification by
crystallites is large in P15 and zero in C10.

(3) The Urayama stress–strain measurements on the chemical gel
C10 in the four geometrical modes, pure shear measurements
on the chemical gel C7.5 and on the physical gels P15 and P12
are described by the ABGILFIL constitutive equation in
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a reasonably good manner. The prediction of the UE and EBE
behavior of the physical gel P15 from pure shear measurements
leaves some open questions; further experimental study might
help to answer them. The observations R> (l1þ1/l1),
s1,red> s2,red, W2< 0 found for physical gels is quantitatively
explained by amplification of local strain due to the presence of
crystallites. In physical gels, this effect is not counteracted by
topological constraints, which are small here, possibly due to
a low degree of network-chain entanglement. The ratio R al-
most independent of strain found in chemical gels results from
the compensation of the opposing effects imparted by the
connectivity and constraint terms.
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Appendix A

Stress–strain relations (Eq. (3)) can be written in the general
form

si ¼ A1

�
l2

i � l2
3

�.
li þ A2

�
ln

i � ln
3
��

li (A1)

The meaning of A1, A2 follows from a comparison of Eq. (A1) with
Eq. (3).

Special cases of Eq. (A1) for the most often used geometrical
modes are the following.

Stress in uniaxial extension UE

l3 ¼ l2 ¼ 1=l1=2
1 ; lc ¼

n�
l2

1 þ 2=l1

�.
3
o1=2

�
2
� �

n�1 ð1þn=2Þ
�

s1 ¼ A1 l1 � 1=l1 þ A2 l1 � 1=l1 ; s2 ¼ 0; (A2)

Stress in equibiaxial extension EBE

l1 ¼ l2; lc ¼
n�

2l2
1 þ 1=l4

1

�.
3
o1=2

�
5
� �

n�1 ð1þ2nÞ
�

s1 ¼ A1 l1 � 1=l1 þ A2 l1 � 1=l1 ; s2 ¼ s1 (A3)

Stresses in pure shear PS

l2 ¼ 1; l3 ¼ 1=l1; lc ¼
n�

l2
1 þ 1þ 1=l2

1

�.
3
o1=2
longitudinal pure shear stress sPS1

s1 ¼ A1

�
l1 � 1=l3

1

�
þ A2

�
ln�1

1 � 1=lð1þnÞ
1

�
(A4)

transverse pure shear stress sPS2

s2 ¼ A1

�
1� 1=l2

1

�
þ A2

�
1� 1=ln

1
�

(A5)

Reduced stresses are defined as the ratios of stress and of the
corresponding Gaussian stretch ratio function.

Reduced stress in uniaxial extension sred;UE ¼ sUE=ðl1 � 1=l2
1Þ.

Reduced stress in equibiaxial extension sred;EBE ¼
sEBE=ðl1 � 1=l5

1Þ.
Reduced stress in longitudinal pure shear sred;PS1 ¼
sPS1=ðl1 � 1=l3

1Þ.
Reduced stress in transverse pure shear sred;PS2 ¼
sPS2=ð1� 1=l2

1Þ.
References

[1] Urayama K, Ogasawara S, Takigawa T. Polymer 2006;47:6868–73.
[2] James HM, Guth E. J Chem Phys 1943;11:455–81.
[3] Wang MC, Guth E. J Chem Phys 1952;20:1144–57.
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